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A function for the intermolecular forces, based on atom-atom interactions, is used to calculate the 
distortion forces on the molecule of octasulphur in the orthorhombic structure. By making use of the 
internal force field resulting from spectroscopic studies the behaviour of the molecule under these forces 
is found. The calcalated molecular distortion agrees very well with that found by performing constrained 
refinements, except that the distortions calculated are systematically too small. This calculation shows 
that measurable distortions are to be expected for molecules with fairly low internal-mode frequencies, 
and that simple models for intermolecular forces predict the observed effect. The energy involved in 
the molecular distortion is 0.0837 kcal/mole (5.81 x 10 -22 joule/molecule). 

Introduction 

There are many examples in X-ray and neutron diffrac- 
tion experiments indicating static distortions of  mol- 
ecules in the crystal lf le  environment  compared with 
their free-state shape. In some cases the shifts in the 
atomic positior, s arc several times larger than the ex- 
perimental  errors. 

The static distortions are due to the intermolecular 
forces in which the repulsixe terms between non- 
bor, ded atoms must predominate.  If  we have a pcten- 
tial model for the interaction between these non- 
bor.ded atoms we are then able to calculate the force 
on exery atom of each molecule. The response of the 
molecule depends on the force field between the atoms 
in the molecule itself. This force field can be found by 
spectroscopic methods, as described by Wilson, Decius 
& Cross (1955) or by Cyvin (1972). 

We have made a calculation for the distortion of 
octasulphur molecules in the or thorhombic structure. 
The potential model from the lattice-statics calcula- 
tions of  Rinaldi  & Pawley (1973) is used, along with 
the molecular force field of  Cyvin (1970). 

The calculation method 

The potential between two non-bonded sulphur  atoms 
located at positions ri and rj  is assumed to be 

A 
V(r~) - + B exp ( - 0~r~j) (1) 

rt j  6 

where rij = [ r i - r j l  and A, B and ~ are constants deter- 
mined from thermodynamic  data and lattice statics 
calculations (Rinaldi  & Pawley, 1973): 

A = 2149 kcal A6/mole 
B = 199900 kcal /mole 

=3.49 A -1. 

By summing over.] we get the contribution to the crys- 
tal potential of atom i. Oaly interactions for interatomic 
distances smaller than 5/k are taken into account, as the 
contribution to the potential from more distant contact~ 
depends very little on the detailed atomic arrangement.  

The static force on the atgm i is the negative gradient 
of  the atom potential, written 

fi = - gradl Vi = - gradi ~ V(rij) (2) 
J 

where the gradient is taken with respect to the coor- 
dinates of  a tom i. 

The total force on the eight-atom molecule can be 
represented by one 24-component vector 

f=  il . (3) 

This force must be balanced by the internal force field, 
which is considered to be harmonic.  This leads to the 
equation 

f=~u (4) 
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where q~ is the harmonic force constant 24 x 24 tensor 
and u is the 24-component displacement vector, having 
three Cartesian components for every atom in the 
molecule, q0 was obtained from Cyvin (1970) who fitted 
the symmetry force constants to the observed vibra- 
tional frequencies of the molecule. This resulted in an 
18x 18 tensor which we transform to the Cartesian 
system of the molecule, thereby enlarging it to 24 x 24. 
It is finally rotated to the orientation of the molecule 
in the crystal. 

The transformation which enlarges this matrix in- 
troduces six zero roots, so that equation (4) cannot be 
solved for u simply by inversion. However the equa- 
tion applies only when the molecule is in static equi- 
librium as it must be in a potential minimum in the 
crystal. This means that the net force and torque on it 
must be zero, or 

and 

8 

f ,=O (5) 
i = l  

8 

~, f~ x r~=0 .  (6) 
i=1 

It is convenient but not necessary to have the coor- 
dinates of r with respect to the molecular centre of 
gravity. Under the above conditions equation (4) is 
soluble, except that an arbitrary rotational or trans- 
lational displacement of  the whole molecule can be 
added to the mathematical solution of u. This is caused 
by the existence of the six zero roots of the enlarged 
matrix q~, whose eigenvectors are just the displace- 
ments mentioned. The conditions (5) and (6) mean that 
f is orthogonal to these six eigenvectors, which is a 
necessary and sufficient condition for the solubility of 
equation (4). 

The problem is most easily solved by changing basis 
to the normal coordinates of the vibrations of the 
molecule. These are defined as the column vectors of 
the orthogonal transformation U which diagonalizes 
q~, while q~ transforms to 

Uq)UT=diag (21,22,.. .  }-24) • (7) 

The elements 2t are the 24 squares of the angular 
frequencies of the fundamental vibrations of  the mol- 
ecule, multiplied by the mass of the sulphur atom. The 
displacement vector u has an expansion in the new 
basis given by 

24 

u= ~ ~,e, (8) 
i=1  

where at and e~ are the expansion coefficients and the 
unit normal displacements respectively. Equation (4) 
can now be written, using (8) 

f =~p ~, oqe,= ~, 7.).ie , (9) 
i i 

because e~ are the eigenvectors of q. Finally by taking 
the scalar product of eT and f of equation (9), we get 

e~. f =  ~i2t (10) 

where the orthonormality of the ei vectors has been 
used. 

Equation (10) can be used for determining the at 
values, but 2t are only the non-zero eigenvalues. The 
forces in this equation are at first those calculated 
when the molecule is undistorted, but as the force must 
correspond to the final positions of the atoms an itera- 
tive procedure is necessary. The final distortion is 

~ { e i r - f  / 
u=i= 1 --).~---[e,. ( l l )  

Calculation for sulphur 

(i) Crystal and molecular structure 
The space group of orthorhombic sulphur (a-sul- 

phur) is Fddd and there are four molecules in the 
primitive unit cell, as shown by Abrahams (1955). Tak- 
ing the unit-cell origin at a centre of  symmetry, the 
centre of one molecule is placed at (~a,~b,z), and the 
others are related by symmetry. The molecular site 
symmetry is 2z, denoting a twofold axis parallel to the 
crystal z axis. The experimental cell parameters from 
Caron & Donohue (1961) are 

a =  10.467, b =  12.870, c = 2 4 . 4 7 3 / k .  

The angle between the xz plane and the mean plane 
of the molecule taken from Pawley & Rinaldi (1972) 
is 0=141.3 °, and z=4.0295 A. The free-state sym- 
metry of the molecule is assumed to be 8m. Projection 
of the molecular structure in the plane perpendicular 
to the g axis is presented in Fig. 1. 

Fig. 1. Two views of the octasulphur molecule. The first is 
projected perpendicular to the plane of the molecule, and r 
is the radial distance of all atoms projected in the YZ plane. 
The other view is down the Y axis, showing the definition of 
x. Two sets of displacement vectors are shown; the stippled 
vectors are from the constrained refinement and the un- 
stippled are from the present calculation. The vectors are 
enlarged by a factor of 50. Because the Z axis coincides with 
the crystal z axis, the vectors for the atoms in one half 
of the molecule have been omitted. 
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The structure of  the symmetric molecule can be de- 
scribed by two parameters r and x. In Fig. 1 r is the 
projected distance of the atoms from the centre of the 
molecule. The atoms which have numbers 1 and 2 are 
at a distance x above the projection plane while those 
numbered 3 and 4 are at - x .  The remaining atoms are 
related to these by the diad axis, 2z, which is common 
to the molecule and the crystal. The values for r and 
x are r=2-3441 and x=0 .4960  A after applying libra- 
tion corrections to the values from Pawley & Rinaldi  
(1972). The molecule is finally rotated from the coor- 
dinate system of Fig. 1 to its position in the crystal by 
the matr ix A, 

( c o s 0  s i n 0  i )  
A =  - s i n  0 cos0  . 

0 0 

(ii) Symmetry of  the eigenvectors 
The eigenvectors ei with non-zero eigenvalues be- 

long to the representations 

F = 2 A I +  B i +  B2+2E1 + 3E2+2E3 • 

The t ransformation properties of  the eigenvectors un- 
der the symmetry operations of the molecular site 
must be considered. Those belonging to the B2 rep- 
resentation are ant isymmetric  under the 2z operation 
and can be discarded for the following reason. The 
operation 2z is a crystalline symmetry,  and therefore 
any distortion of the molecule in the crystal must  obey 
this symmetry operation. Consequently no distortion 
breaking this symmetry is allowed. 

The AI modes are symmetric with respect to all the 
operations in the symmetry group of  the molecule. 
There will clearly be some distortion corresponding to 
this symmetry, and this will simply affect the values 
of  r and x. This is distortion which it is not possible 
to measure by crystal-structure analysis whereas it is 
possible, as Pawley & Rinaldi  (1972) show, to measure 
the distortion from the symmetrical  state. We can 
therefore compare the measured distortion with the 
calculated effect of  B1 + 2Et + 31:2 + 21:3 representations. 

(iii) Calculation ol" the forces and displacements 
As a first approximat ion for the intermolecular forces 

f we used the atomic positions for symmetric molecules 
in the crystal. Using these in equation (11) a first ap- 
proximat ion to the distortion vector u was got. The 
procedure was then repeated with the distorted mol- 
ecule and iterations were made until the difference be- 
tween successive results for u became negligible. 

Before each iteration cycle the crystal potential was 
minimized in the way as done in the lattice statics study 
of Rinaldi  & Pawley (1973). Small changes in the cell 
parameters a, b and c and in the parameters z and 0 
for the molecule position had to be made to attain a 
true potential minimum.  The total amounts  of  these 
shifts were Aa=-0 .008 ,  Ab=0.162,  Ac=0.257,  Az= 
0.077 ,~ and AO= - 1.9 °. 

After the calculation we were able to correct the 
molecular  parameters r and x as measured by crystal- 
structure analysis for the effect of  the AI distortion, 
giving the structure of the free-state molecule. These 
corrections are Ar=-0"0022 and Ax=0.0037  A. 

The calculated values of  the distortion parameters ~i 
are given in Table 1, together with the corresponding 
frequencies and representation symbols. One of  the 
lowest frequency modes, 1:2, contributes considerably 
more than any of the others. 

Table 1. Coefficient (last column) of  the amplitude of  
distortion in the various representation occurrences, due 

account being taken of  degeneracy 

The largest distortion is listed first, and the frequencies of the 
corresponding modes of vibration are given. 

Represen- Frequency Degen- ( ~ ) l / z  A 
tation cm -t eracy n n 

Ez 86 2 0"02444 
Al 218 1 0"01147 
El 191 2 0"01112 
E2 152 2 0"00831 
kl 475 1 0"00440 
Bt 411 1 0"00310 
E3 248 2 0"00308 
El 471 2 0"00221 
E2 475 2 0"00066 
E3 437 2 0"00045 

The distortion vector u is presented in Table 2 and 
in Fig. 1. This is compared with the differences in co- 
ordinates which were got by Pawley & Rinaldi  (1972) 
in their refinement with and without using the sym- 
metry-shape constraint. The shifts we now calculate 
are in the same general directions but are systematically 
somewhat small. The comparison can be seen in Fig. 1 
where the stippled arrows are the result of  the struc- 
ture refinement. 

Table 2. Molecular-distortion vectors in the coordinate 
frame of  Fig. 1, where the Z axis is coincident with the 

crystal z axis 

The atoms are numbered as in Abrahams (1955), and the 
measured molecular distortion comes from the constrained re- 
finement of Pawley & Rinaldi (1972). As this cannot include 
the AI distortion, the calculated At distortion included in the 
present calculation is listed separately in the last column. 

Molecular distortion (A) 

from from 
constrained present 

Atom refinements calculation 
X --0"021 --0-011 

SI Y 0"009 0"005 
"[ / Z - 0"006 - 0"002 

X 0"022 0"008 
Sz Y -0"011 - 0"001 

Z -0"019 --0"012 

i 
X --0"031 --0"017 

$3 Y -0"012 -0"002 
Z 0"011 0"003 
X 0"030 0"029 

$4 , Y 0 018 0 010 
Z 0"017 0"011 

f r o m  
the  At 

r e p r e s e n t a t i o n  

-0.004 
0"001 

- 0"002 
- 0.004 

0.002 
0"00! 
0"004 
0.002 

- 0 - 0 0 1  

0-004 
0.001 
0.002 

A C 29A - 3 
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Conclusion 

The calculated static distortion of the $8 molecule 
agrees well with the experimental observations. How- 
ever the amount of distortion deduced from experi- 
ments seems to be somewhat bigger than that calcu- 
lated. This observation is consistent with the prelim- 
inary comparison of the calculated and observed pho- 
non dispersion data of Rinaldi (1973), suggesting that 
the potential used is somewhat too soft and the forces 
correspondingly too weak. 

The calculation shows that the crystal forces are 
strong enough to cause definitely observable distor- 
tions in the molecules. The degree of distortion of $8 
is however somewhat exceptional because of the very 
soft E2 internal mode which corresponds to roughly 
half of the distortion. Other molecules lacking such 
low-frequency modes would have correspondingly 
smaller distortions under forces of equal strength. 

The energy involved in the molecular distortion, 
½uq~u r, is calculated to be 0.0837 kcal/mole (5.81 x 
10 -22 joule/molecule) compared with the sublimation 
energy of about - 2 5  kcal/mole ( -  1740 x 10 -zz joule/ 
molecule). If the intermolecular forces are constant 
over the small displacement u, the total crystal poten- 
tial would drop by ½uq~u r as the intermolecular poten- 
tial contribution would be lowered by ugu r. As these 
forces vary slightly, the latter is reduced by a some- 

what greater amount, 0.1834 kcal/mole (12.7x 10 -22 
joule/molecule). 

We anticipate little change in our main result when 
the accurate X-ray and neutron structural studies 
which are now in progress become available. Therefore 
the symmetrical molecule from Pawley & Rinaldi 
(1972), corrected for the effect of libration and At dis- 
tortion is probably the most accurate measure we have 
of octasulphur in the free state. 

We would like to thank both the Finnish Cultural 
Foundation and the National Research Council for 
Sciences, Finland, for support which enabled one of 
us (J.K.) to participate in this work. 
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Twinning has been studied in several samples of VOz cantaining in substitution solid solution 0.5 and 
2.5 at. % Cr. The twinning is by reticular pseudo-merohedry and it is controlled by the tetragonal 
pseudo-symmetry of a superlattice obtained from the original monoclinic cell (a ~- 9.1, b ~ 5.8, c -  4"5 ~, 
fl~-90 °) by means of the transformation 109/002/0T0. More than one twin law is found in every sample 
studied. All the theoretically possible twin laws, except one, have been observed. The possibility of 
twinning simulating a lattice and a space group different from the true ones has been pointed out and 
methods for detecting twins in these cases are given. 

Introduction 

In general, the structural changes occurring in metal- 
insulator transitions can be described in terms of small 
distortions of the crystal structure of one of the two 
phases involved in the transformation. When the dis- 
tortions result in a final phase having a symmetry lower 
than that of the initial phase, the transition is usually 

associated with twin formation. The presence of 
twinned individuals in a sample complicates the inter- 
pretation of the diffraction patterns and, if not detected, 
might result in erroneous structural determinations. 
Therefore, a detailed analysis of twinning is always 
necessary in order to determine the true crystallogra- 
phic parameters. 

Cr-doped VO2 undergoes a metal-insulator transi- 


